Energy Optimization of a Large Central Plant Chilled Water System

Riyaz Papar, PE, CEM

Hudson Technologies Company

Harold Myart, PE, CEM Mark Krawczyk, PE, CEM

Freescale Semiconductor, Inc.

Texas Chemical Council Seminar June 09, 2009

- Objectives
- System Description
- Data Collection & Models
- **System Optimization Opportunities**
- System Optimization Results
- Conclusions

Objectives

- Conduct a chilled water system Energy Savings Assessment (ESA) using a Systems Approach at the Oak Hill Plant site
- Identify (and quantify) chilled water plant energy savings opportunities
- Assist plant personnel to gain familiarity with certain bestpractices and to continue to identify energy efficiency improvement opportunities at the site

System Description

Chilled Water loop (42°F supply temperature)

- Chiller #1: Trane CVHF 1280 Centrifugal 1,250 RT
- Chiller #2: Trane CVHF 1280 Centrifugal 1,250 RT
- Chiller #3: Trane CVHF Centrifugal 1,470 RT (New)
- ➢ Chiller #4: York YSNNNNS7 Screw − 1,180 RT
- Chiller #5: York YSNNNNS7 Screw 1,180 RT
- Chiller #6: York YSNNNNS7 Screw 1,180 RT

Glycol loop (32°F supply temperature)

- ➢ Glycol Chiller #1: Trane CVHF 770 Centrifugal − 600 RT
- Glycol Chiller #2: Trane CVHF 770 Centrifugal 600 RT
- Glycol Chiller #3: Trane CVHF 770 Centrifugal 600 RT

Identified Chiller Plant BestPractices

- Site-level integrated chilled water and glycol loops
- High efficiency two-stage centrifugal chillers for base load and screw machines to provide for swing capacity
- □ Use of variable speed drives on the secondary pumping loop
- Use of variable speed drives on the condenser water pumps
- □ Use of two-speed fans on the cooling towers
- Significant instrumentation, data monitoring and controls
- Use of real-time data for tracking efficiency metrics (kW/ton) and a Historian for analysis
- Good periodic maintenance practices for equipment (oil analysis, cleaning of heat exchanger tubes, eddy current testing, etc.)
- Periodic calibration of all critical instrumentation

Data Collection

Hourly average data for one year (10/01/07 – 09/30/08) for each chiller

- > Ambient conditions
 - Temperature
 - Humidity
- Chilled water flow
- > Condenser water flow
- Power consumption
- > Chilled water supply and return temperatures
- Condenser water supply and return temperatures
- Bypass flow

Load Profile

Chilled Water Plant Efficiency

Chilled Water Plant Efficiency

Chiller #	1	2	3	4	5	6	Overall Plant
Operating hours	7,469	7,458	2,633	6,877	6,336	2,591	8,750
Load (RT)	924	944	868	887	863	846	3,428
Power (kW)	553	511	610	599	561	591	2,144
Efficiency (kW/RT)	0.597	0.541	0.705	0.677	0.650	0.704	0.623

Chiller Efficiency

Chiller Efficiency

Reduce condenser water temperature

- Condenser water maintained currently at 75°F
- Controlled by two-speed fans
- Typically, 10% energy used by fans, 20% by pumps and 70% by compressor
- Compressor kW/RT increases with higher condenser water temperature
- Float condenser pressure for maximum savings
- Implementation to lower condenser water to 70°F
- Potential savings ~7%

- Constraints / Precautions Reduce condenser water temperature
 - Check manufacturers' recommendations 65°F minimum condenser water temperature
 - Refrigerant Stacking issues
 - Concerns about leaks in low pressure (R123) chillers

Reduce number of operating chillers

Reduce number of operating chillers

- Typically, one more chiller than needed capacity in excess of 1,200 RT on average and sometimes as high as 2,000 RT
- Bypass flowmeter readings (average ~2,500 gpm)
- > Benefits of shutting down one chiller
 - Reduction of overall chillers kW/RT
 - Reduction in pumping power
 - Improved heat transfer in the evaporators
 - Reduction in maintenance costs
- Preliminary estimates ~10% energy savings

Increase primary chilled water flow through chillers

- Design rating is based on 42°F chilled water, 85°F condenser water and 100% load (Tons)
- > But this happens for 1-3% of the operating hours
- > Chiller has a lot more capacity at off-design conditions
- Implement Variable Primary Flow and increase chilled water flow
- > Chiller moves to full-load conditions and kW/RT reduces
- Preliminary estimates ~5-10% energy savings
- Constraints / Precautions
 - Pumping power capability
 - Compressor horsepower limitation

Transfer load from 32°F glycol loop to 42°F chilled water loop

- Full load operating efficiency
 - 32°F glycol chiller 0.727 kW/RT
 - 42°F water chiller 0.60 kW/RT
- > It is possible to transfer 50% of the glycol loop load
- Potential energy savings 3-5%
- Constraints / Precautions
 - Load balancing issues
 - Availability of additional heat transfer area on the chilled water loop
 - Change of control setpoints

Implement SMART algorithm to reset chilled water supply temperature

- I°F increase in chilled water supply temperature leads to a reduction of 0.015 kW/RT
- DAS has information on chilled water flow control valve positions of almost all the air-handling units
- Automatically increase chilled water supply temperature till a control valve reaches 80% open
- > Currently, done on a manual basis
- Constraints / Precautions
 - Dynamic flow issues
 - Will have to ensure "no hunting"

BestPractices

- Implement real-time calculation of chiller efficiencies and trending
 - > Will provide information for further optimization
 - > All the data is already available

Implement a Chiller Chemistry[™] program

- Fluids Refrigerant, Oil and Water should be tested every six months
- > An engineering analysis combining all these results
- Root-cause analysis
- Best Predictive Maintenance can be done online

	Energy Sa	avings	Cost	Project	РВ
Opportunity	kWh	Therms	Savings (\$)	Cost (\$)	
Reduce condenser water temperature	815,000	0	53,000	40,000	Ν
Reduce number of operating chillers	1,400,000	0	91,000	25,000	Ν
Increase primary chilled water flow through the chillers	930,000	0	60,000	10,000	Ν
Transfer load from the 32°F glycol loop to the 42°F chilled water loop	315,000	0	20,000	25,000	М
Implement SMART algorithm to reset chilled water supply temperature	NC	0	NC	NC	М
Implement real time monitoring and add trending of efficiency	NA	NA	NA	25,000	Ν
Implement a Chiller Chemistry™ PM program	NC	0	NC	5,000	N

*NA – Not Applicable

**NC – Not Calculated (See write up for details)

Conclusions

- Instrumentation & monitoring of "critical" parameters was key for optimization of the chilled water plant
- A Systems Approach is needed for optimizing any energy system
- Typically, chilled water and refrigeration systems are neglected in plants but they offer significant energy savings potential

Acknowledgments

- Kathey Ferland
 TX Industries of the Future
- Paul Lloyd & Dean Blackman
 Freescale Semiconductor, Inc.

Discussion & Questions

